雷竞技RAYBET·(中国)官方网站

全国统一热线:

400-123-4657

雷竞技RAYBETbanner图
雷竞技动态

leijingjidongtai

产品中心PRDUCTS

技术支持RECRUITMENT

    技术支持分售前技术支持和售后技术支持,售前技术支持是指在销售遇到无法解答的产品问题时,售前技术支持给予帮助;售后技术支持是指产品公司为其产品用户提供的售后服务的一种形式,帮助用户诊断并解决其在使用产品...
点击查看更多
雷竞技RAYBET

当前位置: 雷竞技RAYBET > 雷竞技动态 > 雷竞技RAYBET

凤凰彩票电子电路设计(精选5篇)电子元件

2023-06-28 15:15:34

  关键词:Proteus;电路设计;四路彩灯;仿线Proteus软件的概述

  Proteus软件是由英国LabcenterElectronics公司开发的一款EDA工具软件,是目前世界上最先进最完善的电路设计与仿真平台。Proteus软件的功能强大,它集电路设计、制版及仿真等多种功能于一身,不仅能够对电工、电子技术学科设计的电路进行设计与仿真,并且功能齐全,界面多彩,是近年来备受电子设计爱好者青睐的一款新型电子电路设计与仿真软。在Proteus编辑界面绘制电路原理图,通过仿真计算,修正错误,直到符合设计指标要求,确定设计方案,输出设计图,自动生成PCB图、修订。

  以四路彩灯数字电路设计为例,结合Proteus软件辅助电子电路设计。其技术指标要求如下:(1)共四个彩灯,分别实现三个过程,构成一个循环共12秒:;(2)第一个过程要求四个灯依次点亮,共4秒;(3)第二个过程要求四个灯以此熄灭,共4秒,先亮者后灭(4)最后4秒要求四个灯同时亮一下灭一下,共闪4下。

  主要是考察设计四位双向通用移位寄存器74LS194的灵活应用,四个灯可用四个发光二极管表示。如图1,图中MR为复位信号,正常工作时应接高电平;CLK为时钟信号,上升沿到来时有效。

  把四路彩灯接在74LS194的Q0~Q3上,SR稳定接在一高电平,SL稳定接地地位,而D0~D3接周期为1秒的方波信号。三个过程每个4秒,加起来正好是12秒。图2是正确的CLK信号与1HZ方波信号的比较。前面我们已经确定D0~D3接1Hz的方波信号,那么Q0~Q3在读D0~D3的信号时是在CLK上升沿到来的一瞬间,看图3的前半部分。当74LS194的工作方式为11时,一定要改变CLK的信号频率为D0~D3信号频率的2倍,才可以在D0~D3的一个周期内出现CLK的两个上升沿,Q0~Q3分别读到1和0各一次,如图3的后半部分。即正确的时钟信号在整个12秒时间应该是前8秒为1Hz的频率,后4秒变为2Hz的方波信号,再用D触发器分频产生1HZ的方波信号。

  连接电路如图3所示。因为设计出的是一个同步时序逻辑电路,注意途中两个D触发器的时钟连接在一起接周期为4秒的时钟信号。

  根据以上分析,连接电路如图7所示,其中省去了555及二分频电路,直接用数字脉冲源进行仿真。另外,图中所有D触发器的异步输入端在实际电路连接时最好接高电平。产生时钟的电路用与非逻辑替代了与或逻辑。因为与非门的应用最普遍。平时我们在设计电路时,通过卡诺图化简得到的与或式,要想全部用与非门实现,可在草纸上直接画成与或逻辑,然后只需要在与门的输出端与此线的另一头即或门的输入端各加一个小圆圈,两个逻辑非抵消,不影响逻辑关系,直到把或门的输入处理完毕为止。这样或门前面的与门都变成了与非门,或门变成了非或门,而根据摩根定理,非或门恒等于与非门。

  [1]王尔申,庞涛,,等.Multisim和Proteus仿真在数字电路课程教学中的应[J].实验技术与管理,2013,78~81.

  随着Proteu的功能日益强大,Proteu已经越来越多的应用到各类电子产品的设计和设计工作中,深受电子产品开发机构的信赖和喜爱。目前很多知名电子产品公司都在使用Proteu软件设计电子产品,利用Proteu开发研制而成的应用比较广泛的电子产品主要由“微电脑防盗报警器”、“自动开盖垃圾桶”、“LED汉字显示器”等,已经广泛的应用到人们的生产及生活当中。根据电子产品设计实践证明,利用Proteu这种电子产品开发软件能够快速的完成电子线路的设计,而且能够利用设计的电子线路完成电子产品使用的模拟仿真,极大地提高了电子产品的设计效率。由于电子产品设计程序复杂,要求内容精细,一个不小心可能会导致整个设计线路必须从新开始,但是利用Proteu则大大的缩短了研发周期,有效的降低了电子产品生产企业的生产成本。随着信息化进程的不断加快,在未来的人类社会中对于电子产品的应用将会变得越来越广泛,而且电子产品也会变得越来越智能化。很多智能化的电子产品的核心机构和部件就是MUC,智能化电子产品近些年发展迅猛,正在逐步的走进人们的生活当中。笔者将主要根据Proteu在智能化电子产品的设计研发中的应用为例,对仿真技术下电子产品设计提供更加广阔的思路。

  在智能化电子产品的设计过程中,传统方式主要将该设计工作氛围以下几个方面:首先就是电子产品的硬件设计,硬件设计中主要包含电子产品的原理图设计以及电路板的制作,这是构成电子产品的基础部分;其次就是电子产品的软件设计部分,主要包括电子线路的调试以及语言汇编及其调试;最后就是电子产品的整机调试,通过软硬件结合调试的方式对所设计的硬件及软件部分结合的效果进行测试。传统电子产品的开发简单来说就是以下几个步骤:首先要完成原理图设计,之后设计PCB电路板,之后就是PCB制板,然后制作实物的物理样本,完成电子产品的软件设计之后在对整机进行调试,如果调试合格则研制成功,调试不合格的将从原理图从新开始设计工作。

  根据电子产品的智能化程度其设计时间也是各不相同的,比较简单的通常需要一天的时间就能够完成电路的设计部分;但是PCB制板的时间比较长,大概需要半个月的时间才能够完成制板工作;之后就是进行物理制板,这个部分时间大约需要两天;软件设计工作也需要大概一天的时间;电子产品的系统测试大概需要一天的时间。由此可见完成一个较为简单的电子产品的设计大概需要3周的时间。而且在电子产品的设计工作中,电路设计细节与软件设计细节要求都比较严格,在设计阶段不能够及时的发现其中所存在的问题,这就需要重复几次上述设计过程之后才能够达到最初的设计目的,因此传统方式下电子产品的设计周期很长,无形中也增加了电子产品的设计成本。

  通过Proteu能够实现对产品设计过程的仿真,利用Proteu进行系统设计步骤主要分为以下几个步骤:原理图设计与软件设计同时展开,完成之后进行电子产品整体的系统仿真,之后就是完成PCB电路板的设计,然后在制作物理样本。利用Proteu软件进行仿真设计主要是在软件中进行电路设计,设计完成之后就能够进行实体运行仿真,不符合设计要求或不能够达到预期目的则对原理图进行修改。在Proteu软件中庞大的数据库极大地简化了设计过程,有效的降低了电子产品的生产周期,极大地节约了生产升本。利用Proteu软件进行电路板的设计工作主要是完成电子产品中的布线,也就是我们通常所说的RAES。实际产品的制作是在原理图设计完成之后进行的,由于在实物制作之前已经完成了软件调凤凰彩票试工作,所以说在装配阶段工作精细的话必然能够有效的保证电子产品的可用性。由此可见利用Proteu是多么的高效、高质。

  Proteu软件的功能强大,在电子产品设计中的应用非常广泛,以下笔者将以纯水机的整个设计研发过程为例,就Proteu在电子产品设计中的应用问题进行分析,希望能够对电子产品设计人员的工作能够有所帮助,进一步提升我国电子产品研制行业的水平。

  Proteu软件的操作时极为便捷的,利用Proteu能够在同一窗口中完成电子线路的设计和仿真工作。通过Proteu软件中的编辑区完成对所设计的电子产品的线路设计,还能通过预览模式对所设计的电路进行预览和仿真。整个设计工作只要通过鼠标就能够完成,极大地简化了电子产品的设计过程。

  利用Proteu中的ISIS编辑区完成软件程序的编辑工作,并且能够将编辑完成的内容进行汇编形成目标代码,这一整套的操作在Proteu软件中都有特定按钮来完成操作。对于存在问题的编程Proteu软件还能够自动生成错误报告,错误报告中也能够对错误源给出查找范围。

  在上述步骤完成之后,对所要调试的内容进行加载,首先要在Proteu软件中调出“Editcomponent”对话框,然后在对话框中输入本次调试工作所要调试的目标文件,并在Proteu软件中设置好晶振频率,之后点击仿真按钮便开始进行仿真。利用Proteu软件中的仿真功能不但能够完成交互式的实验,而且能够实现实时仿真的功能。而且在仿真过程中能够根据现实中可能出现的情况对其进行调试,例如纯水机的仿真操作中,可以在满水或者强冲等多种模式下对纯水机的操作进行模拟,仿线利用Proteu完成电路板的设计

  在Proteu软件中具有高级布线的功能,通过ARES能够实现对电路板的布线摆放及软件更改等多种功能。Proteu电路板设计功能十分人性化,不但能够简单的实现撤销及自动布置的功能,还能够根据设计者的设计思路有设计者手动操作完成电路板中线路的布射。在电路板设计完成之后能够通过3D视图的效果对所设计的电路板进行全方位的观察,更加优化的电路板设计的过程及电路板设计的作用。

  在完成上述的前期设计及仿真工作之后,就要进行电子产品设计的第五项工作,就是完成PCB的制板。

  物理样品的制作完成是电子产品设计工作完成的最后一步,安装并且将样本调试成功之后样本就能够应用在电子产品当中。通过物理样本制作完成之后的样式与Proteus的3D模拟效果进行比对我们可以发现Proteus的3D展示与设备完全一致。只要样本的制作过程中能够根据设计要求进行正确的安装,将焊接点牢固的焊接就能够顺利的完成制作过程。

  电子技术是一门实践性很强的课程,其中电子电路设计是一个重要的实践环节,掌握单元电路的设计方法是每个电子工程师必备的能力。具体介绍了单元电子电路设计步骤及几种重要单元电路的设计方法。电子技术是一门实践性很强的课程,加强技能的训练及培养,是提高工程人员的素质和能力的必要手段。在电子信息类教学中,电子电路设计是一个重要的实践环节,着重让学员从理论学习过渡到实际的应用,为以后从事技术工作打下坚实的基础。

  设计电子电路系统时,首先必须明确系统的设计任务,根据任务进行方案选择,然后对方案中的各个部分进行单元的设计,参数计算和器件选择,最后将各个部分连接在一起,画出一个符合设计要求的完整的系统电路图。因此,掌握单元电路的设计方法和实际设计电路的能力,是电子工程师必备的能力。

  所谓电子技术是根据电子学的原理,运用电子器件设计和制造某种特定功能的电路以解决实际问题的一门学科。包括信息电子技术和电路电子技术两大分支。信息电子技术包括模拟电子技术和数字电子技术。电子技术是对电子信号进行处理的技术,处理的方式有信号的发生、放大、滤波、转换。

  电子电路是由两部分组成,即电子元件和电子器件。电子原件是指电子设备中的电阻器、电容器、变压器和开关等,而电子器件通常由电子管、离子管、晶体管等构成。电子电路按组成方式可分为分立电路和集成电路。单元电路是整个电子电路系统的一部分,常用的单元电路有放大电路,整流电路,震荡电路,检波电路,数字电路。总体来说是与门,非门,或门及其组合的计数电路,触发器,加减运算器等。单元电路的设计训练是为了能提高整体电子电路的设计水平。

  单元电路设计前都需明确本单元电路的任务,详细拟定出单元电路的性能指标,这是单元电路设计最基本的条件。通过计算电压放大的倍数、输入及输出电阻的大小,并且根据电路设计的简单明了、成本低、体积小、可靠性高等特点进行单元电路的设计。

  参数计算是为了保证单元电路的功能指标达到所需的要求,参数计算需要电子技术知识,对这方面的理论要求很高。例如,放大器电路中我们通常需要计算各电阻值以及他们的放大倍数;振荡器中我们通常需要计算电阻电容以及震荡频率。进行参数计算时,同一个电路可能得出不止一组数据,我们要注意选择数据的方法,选择的这组数据需要完成电路设计的要求,并且在实践中能线.画出电路图

  为详细表述单元电路与整机电路的连接关系,设计时需要绘制完整的电路图。通过单元电路之间的相互配合和前后之间的关系使得设计者尽量简化电路结构。例如对于单元电路之间的级联设计,在各单元电路确定以后,还要认真仔细地考虑它们之间的级联问题,从而到达减少浪费,从而降低工作量。注意各部分输入信号、输出信号和控制信号的关系,模拟输入、输出,使得输入、输出、电源、通道间全隔离,将

  直流电流、电压信号分成多路相同或不同的电流、电压信号,实现不同设备同时采集控制。

  绘图时尽量把主电路图画在一张纸上,比较独立和次要部分画在令一张纸上,图的端口和两端做好标记,标出各图纸之间信号的引入及引出。

  一般从输入端和信号源画起,又左至右或者由上至下按信号的流向依次画出单元电路。图中应加适当的标注,并且图形符号要标准,

  各元件之间的连接线应为直线,并且尽量减少交叉。通常情况下连接线应水平或垂直布置,无特殊情况不画斜线,互相连接的交叉用原点表示。

  单元电路的设计是否合理,能够关系到整个电子电路的设计是否能够正常运行。因此,各个单元设计的工程师纷纷致力于单元电路的设计。

  稳压电源设计的一般思路是让输入电压先通过电压变压器,再通过整流网络,然后经过滤波网络最后经过稳压网络。在单元电路中,对于串联反馈式稳压电路大体上可分为调整部分、取样部分、比较放大电路、基准电压电路等。经过这样设计的线路,具有过流及短路保护功能,当负载电流到达限额是能起到保护电路的功能工作。其具体设计方法为:对于整流出来的直流电是很少用来直接带动负载,还必须滤波后降低其纹波系数,但这种电路不能起到稳压的作用。所以稳压电源都应满足一定的技术指标。

  各单元电路确定以后,还要认真仔细地考虑它们之间的级联问题。如电器特性的相互匹配、信号耦合方式、时序配合以及相互干扰等问题。

  对于电气性能相互匹配的问题有些涉及到的是模拟单元电路之间的匹配,有的涉及到的是数字单元电路之间的匹配,有的则需要两者兼顾。从提高放大倍数和负载能力考虑,希望后一级的输入电阻要大,前一级的输入电子要小,但从改善频率响应角度考虑,则刚好相反。

  信号耦合方式有直接耦合、间接耦合、阻容耦合、变压器耦合和光耦合。直接耦合方式最简单,但是在静态情况下,存在两个单元电路的相互影响,因此在电路分析时应加以考虑。

  时序配合的问题比较复杂,先对系统中各个单元电路的信号关系进行详细的分析,来确定系统的时序,以确保系统正常工作下的信号时序。最后设计出实现该时序的方法。

  运算放大器是具有很高放大倍数的电路单元,在实际电路中通常结合反馈网络共同组成某种功能模块。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。运算放大器的设计中,其基本参数应当选择单、双电源供电,电源电流。而且应当输入失调电压、输入失调电流、输入电阻。并且转换速率、建立时间。设计中应当正确认识、对待各种参数,不盲目片面追求指标的先进。其中值得引起重视的是:依据推荐参数在规定的消振引脚之间接入适当的电容消振,这是为了消除运放的高频自激,同时为了减小消振困难这一情况,应尽量避免两级以上放大级级连。

  伴随时代的不断发展和科学技术的不断进步,人们越来越关注社会生产力的提升。采取科学的方式进行电子电路的设计与工作流程的部署和管理,能够满足当下社会生产力发展的基本需求,也能够促进行业的生产进步。当下我国电子行业发展的过程当中都越来越重视相关的技术升级,采取高效率的生产和设计模式才能够实现对理论的进一步应用,也能够满足实际的生产工作需求。模拟的设计构想在实践工作的验证体系下常常显示出各种问题,需要以更加科学、安全、有效的方式实现对相关工作体系的完善,并在具体的工作当中以实践经验论证设计理念,保证电子行业发展的前景要求。1电子电路设计的原理

  电子电路的设计工作具有相关的工作原理和原则,需要遵循一定的制度和规律进行相关工作的设计,以此实现对工作体系的完善性需求。首先,电子电路的设计工作原理要求凤凰彩票,设计的相关内容需要符合整体性要求,在实际的设计工作当中要针对电路工作的各个节点进行监督与功能实践。其次,设计的工作要保证具体功能的落实,针对每个电路的工作职能进行细致的划分。再者,应当进行电路设计的最优化选择,保证电路设计的稳定性和完善性,在实际的工作应用中具备可靠的特征。最后,应当实际的考量到市场经济的价值和效益需求,进行性价比的研究分析并最终完成设计。

  电子电路的设计工作流程比较复杂,具体的工作内容也具有较高的严谨性和准确性。在实际工作进行的过程当中,应当重视对设计目标的确认,在具体工作中明确电子功能的设计。针对电子产品的核心功能应用进行整体的考量,设计的电路能够符合单一操作的要求,进行优化的职能选择。在设计形成初期进行整体研究,包含对电子电路的测试实践。重视对电子电路的调试和功能定位,保证未来工作进行的顺利要求。重视电子电路功能的设计才是保证产品能够高效率工作和服务的基础,也是确认核心功能和辅助功效的重要工作内容。实现设计初期的检查和测试,能够保证设备未来使用的优越性。

  具体的电子电路设计功能测试与调节工作要求的比较准确和细致,在实际的工作过程当汇总需要进行相关仪器的使用和完善,避免当中一些环节出现问题。在调试仪器使用的过程中涉及到众多的零部件,包含万能用的工具表,显示波动幅度的器械,以及信号发出的设备等。针对具体的调试工作进行观察,玩能用的工具表主要是为了测量设备使用期间的电流量和电压力,以及存在的电阻等元素。显示波动幅度的器械主要是为了更准确的测量信号,关注波动变化。信号的发出设备是为了在监测过程中收集信息,确定监测工作准确性和保证基本交流。

  电子电路的调试工作可以划分为诸多细致的流程,在具体工作开展的过程中还需要进行整体工作的完善和优化。调试的工作需要进行电路的线路监测,在实际的工作验收中观察通电的效果。调试的工作还需要确保对电子设备的功能监测,保证实际的工作过程能够正常的运作,充分实现对信息传播的要求。在实际工作开展的过程当中要进行电源的调试,减少工作阻碍,进行指标的规范和数据的验收。除此之外,调试工作还可以划分为两种方式,分别是整体和分区域的调试工作。细致的划分主要是为了给保证验收工作的严谨性要求。最后需要针对环境进行监测,考量实际工作需求进行优化处理。

  在调试工作进行过程当中还需要重视对工作细节的优化处理,保证人员施工的科学性安排,在实际的操作过程当中需要进行设备功能的优化,确保功能的准确性要求。重视对细节工作的监督和管理,在调试的信息记录中掌握数据中存在的差异,为维护系统工作提供良好的基础,也有助于及时的解决系统工作出现的问题。除此之外,还需要认识到系统调试工作反复执行的重要性,针对测量工作进行反复的操作才能够保证电子电路的设计符合实际生产需求。

  综上所述,本次研究针对电子电路设计的相关工作展开分析和研究,希望在实际的工作过程当中掌握实践的工作经验,在未来的电子电路设计工作当中采取先进的科学手段,实现对相关工作内容的整合,满足时展的进步要求。在传统电子电力设计的相关工作基础上实施切实有效的完善策略,保证基本工作的流畅性原则,在实施科学有效的方式和方法进行相关设计工作的管理,满足实际工作的需要,进行不同线路的测试和验收,保证电子电线设计工作的优越功能。重视对电子电路工作的设计工作,在实际工作开展的过程中进行调试工作的监督与管理,进一步促进我国现代化生产效率的提升。

  [1]许小飞,方桦.电子电路设计的原则、方法以及步骤探讨[J].电子制作,2016(10):45.

  [2]丘嵘,涂用军.基于工作过程的学习情境设计的关键要素及途径与方法——以“电子电路调试与应用”课程为例[J].职教通讯,2013(12):5-8.

  在人类的科学研究中,有不少研究成果得益于大自然的启发,例如仿生学技术。随着计算机技术和电子技术的发展,许多的科学研究越来越与生物学紧密相联。在人工智能方面,已经实现了能用计算机和电子设备模仿人类生物体的看、听、和思维等能力;另一方面,受进化论的启发,科学家们提出了基于生物学的电子电路设计技术,将进化理论的方法应用于电子电路的设计中,使得新的电子电路能像生物一样具有对环境变化的适应、免疫、自我进化及自我复制等特性,用来实现高适应、高可靠的电子系统。这类电子电路常称为可进化硬件(EHW, Evolvable HardWare)。本文主要介绍可进化硬件EHW的机理及其相关技术并根据这种机理对高可靠性电子电路的设计进行讨论。

  1 EHW的机理及相关技术计算机系统所要求解决的问题日趋复杂,与此同时,计算机系统本身的结构也越来越复杂。而复杂性的提高就意味着可靠性的降低,实践经验表明,要想使如此复杂的实时系统实现零出错率几乎是不可能的,因此人们寄希望于系统的容错性能:即系统在出现错误的情况下的适应能力。对于如何同时实现系统的复杂性和可靠性,大自然给了我们近乎完美的蓝本。人体是迄今为止我们所知道的最复杂的生物系统,通过千万年基因进化,使得人体可以在某些细胞发生病变的情况下,不断地进行自我诊断,并最终自愈。因此借用这一机理,科学家们研究出可进化硬件(EHW,Evolvable HardWare),理想的可进化硬件不但同样具有自我诊断能力,能够通过自我重构消除错误,而且可以在设计要求或系统工作环境发生变化的情况下,通过自我重构来使电路适应这种变化而继续正常工作。严格地说,EHW具有两个方面的目的,一方面是把进化算法应用于电子电路的设计中;另一方面是硬件具有通过动态地、自主地重构自己实现在线适应变化的能力。前者强调的是进化算法在电子设计中可替代传统基于规范的设计方法;后者强调的是硬件的可适应机理。当然二者的区别也是很模糊的。本文主要讨论的是EHW在第一个方面的问题。

  对EHW的研究主要采用了进化理论中的进化计算(Evolutionary Computing)算法,特别是遗传算法(GA)为设计算法,在数字电路中以现场可编程门阵列(FPGA)为媒介,在模拟电路设计中以现场可编程模拟阵列(FPAA)为媒介来进行的。此外还有建立在晶体管级的现场可编程晶体管阵列(FPTA),它为同时设计数字电路和和模拟电路提供了一个可靠的平台。下面主要介绍一下遗传算法和现场可编程门阵列的相关知识,并以数字电路为例介绍可进化硬件设计方法。

  遗传算法是模拟生物在自然环境中的遗传和进化过程的一种自适应全局优化算法,它借鉴了物种进化的思想,将欲求解问题编码,把可行解表示成字符串形式,称为染色体或个体。先通过初始化随机产生一群个体,称为种群,它们都是假设解。然后把这些假设解置于问题的“环境”中,根据适应值或某种竞争机制选择个体(适应值就是解的满意程度),使用各种遗传操作算子(包括选择,变异,交叉等等)产生下一代(下一代可以完全替代原种群,即非重叠种群;也可以部分替代原种群中一些较差的个体,即重叠种群),如此进化下去,直到满足期望的终止条件,得到问题的最优解为止。

  现场可编程逻辑阵列是一种基于查找表(LUT, Lookup Table)结构的可在线编程的逻辑电路。它由存放在片内RAM中的程序来设置其工作状态,工作时需要对片内的RAM进行编程。当用户通过原理图或硬件描述语言(HDL)描述了一个逻辑电路以后, FPGA开发软件会把设计方案通过编译形成数据流,并将数据流下载凤凰彩票至RAM中。这些RAM中的数据流决定电路的逻辑关系。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用,灌入不同的数据流就会获得不同的硬件系统,这就是可编程特性。这一特性是实现EHW的重要特性。目前在可进化电子电路的设计中,用得最多得是Xilinx 公司的Virtex系列 FPGA芯片。

  本节以设计高容错性的数字电路设计为例来阐述EHW的设计架构及主要设计步骤。对于通过进化理论的遗传算法来产生容错性,所设计的电路系统可以看作一个具有持续性地、实时地适应变化的硬件系统。对于电子电路来说,所谓的变化的来源很多,如硬件故障导致的错误,设计要求和规则的改变电子元件,环境的改变(各种干扰的出现)等。

  从进化论的角度来看,当这些变化发生时,个体的适应度会作相应的改变。当进化进行时,个体会适应这些变化重新获得高的适应度。基于进化论的电子电路设计就是利用这种原理,通过对设计结果进行多次地进化来提高其适应变化的能力。

  电子电路进化设计架构如图1所示。图中给出了电子电路的设计的两种进化,分别是内部进化和外部进化。其中内部进化是指硬件内部结构的进化,而外部进化是指软件模拟的电路的进化。这两种进化是相互独立的,当然通过外部进化得到的最终设计结果还是要由硬件结构的变化来实际体现。从图中可以看出,进化过程是一个循环往复的过程,其中是根据进化算法(遗传算法)的计算结果来进行的。整个进化设计包括以下步骤:

  (1)根据设计的目的,产生初步的方案,并把初步方案用一组染色体(一组“0”和“1”表示的数据串)来表示,其中每个个体表示的是设计的一部分。染色体转化成控制数据流下载到FPGA上,用来定义FPGA的开关状态,从而确定可重构硬件内部各单元的联结,形成了初步的硬件系统。用来设计进化硬件的FPGA器件可以接受任意组合的数据流下载,而不会导致器件的损害。

  (2)将设计结果与目标要求进行比较,并用某种误差表示作为描述系统适应度的衡量准则。这需要一定的检测手段和评估软件的支持。对不同的个体,根据适应度进行排序,下一代的个体将由最优的个体来产生。

  (3)根据适应度再对新的个体组进行统计,并根据统计结果挑选一些个体。一部分被选个体保持原样,另一部分个体根据遗传算法进行修改,如进行交叉和变异,而这种交叉和变异的目的是为了产生更具适应性的下一代。把新一代染色体转化成控制数据流下载到FPGA中对硬件进行进化。

  (4)重复上述步骤,产生新的数代个体,直到新的个体表示的设计方案表现出接近要求的适应能力为止。

  一般来说通过遗传算法最后会得到一个或数个设计结果,最后设计方案具有对设计要求和系统工作环境的最佳适应性。这一过程又叫内部进化或硬件进化。

  图中的右边展示了另一种设计可进化电路的方法,即用模拟软件来代替可重构器件,染色体每一位确定的是软件模拟电路的连接方式,而不是可重构器件各单元的连接方式。这一方法叫外部进化或软件进化。这种方法中进化过程完全模拟进行,只有最后的结果才在器件上实施。

  进化电子电路设计中,最关键的是遗传算法的应用。在遗传算法的应用过程中,变异因子的确定是需要慎重考虑的,它的大小既关系到个体变异的程度,也关系到个体对环境变化做出反应的能力,而这两个因素相互抵触。变异因子越大,个体更容易适应环境变化,对系统出现的错误做出快速反应,但个体更容易发生突变。而变异因子较小时,系统的反应力变差,但系统一旦获得高适应度的设计方案时可以保持稳定。

  对于可进化数字电路的设计,可以在两个层面上进行。一个是在基本的“与”、“或”、“非”门的基础上进行进化设计,一个是在功能块如触发器、加法器和多路选择器的基础上进行。前一种方法更为灵活,而后一种更适于工业应用。有人提出了一种基于进化细胞机(Cellular Automaton)的神经网络模块设计架构。采用这一结构设计时,只需要定义整个模块的适应度,而对于每一模块如何实现它复杂的功能可以不予理睬,对于超大规模线路的设计可以采用这一方法来将电路进行整体优化设计。

  上面描述的软硬件进化电子电路设计可在图2所示的设计系统环境下进行。这一设计系统环境对于测试可重构硬件的构架及展示在FPGA可重构硬件上的进化设计很有用处。该设计系统环境包括遗传算法软件包、FPGA开发系统板、数据采集软硬件、适应度评估软件、用户接口程序及电路模拟仿真软件。

  遗传算法由计算机上运行的一个程序包实现。由它来实现进化计算并产生染色体组。表示硬件描述的染色体通过通信电缆由计算机下载到有FPGA器件的实验板上。然后通过接口将布线结果传回计算机。适应度评估建立在仪器数据采集硬件及软件上,一个接口码将GA与硬件连接起来,可能的设计方案在此得到评估。同时还有一个图形用户接口以便于设计结果的可视化和将问题形式化。通过执行遗传算法在每一代染色体组都会产生新的染色体群组,并被转化为数据流传入实验板上。至于通过软件进化的电子电路设计,可采用Spice软件作为线路模拟仿真软件,把染色体变成模拟电路并通过仿真软件来仿真电路的运行情况凤凰彩票,通过相应软件来评估设计结果。

  以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。

全国统一热线

400-123-4657
+地址:广东省广州市天河区88号
+传真:+86-123-4567
+邮箱:admin@sz-huanqiu.com

友情链接

微信平台

关注雷竞技RAYBET

手机官网

手机官网